
Special issue

Sci.Int.(Lahore),28(3), ,3015-3019,2016 ISSN 1013-5316;CODEN: SINTE 8 3015

May-June

COMPLEXITY OF RECOVERED ARTIFACTS IN REVERSE
ENGINEERING

Safia Sultana
1
*, Mazhar H Malik

2
, Nadim Asif

3
, Maliha Rafi

4
, Hafiz M Haroon

5
 Noman Farooq

6

1,2,4,6 Department of Computer Science & IT, Institute of Southern Punjab, 9-KM, Bosan Rd, Multan
3Department of Computer Science, Bahria University, Lahore, Pakistan

5Department of Computer Science, University of Agricultural, Faisalabad Pakistan

*Email: safiasultana09@yahoo.com (Corresponding Author)

ABSTRACT—The software system are combination of different types of artifacts, which are required to extract at different

levels of abstraction for maintenance purpose. In the new era of software development software system exist in a variety of

languages, and that technically make it highly multifaceted. It is incredibly necessary to understand and extract the system

documents from these complex systems before maintenance, re-engineer or reuse the software system. Software maintenance

activities are require recovering the artifacts from the source code. The source code can also exist in numerous forms. When

abstraction is applied to computer programming, program behaviour is emphasize and implementation details are covered up.

The knowledge of a software product at different levels of abstraction certainly caused operations regarding the maintenance

and reuses the existing software components. It is, therefore natural that there is secure growing interest in reverse

engineering, as a capable of extracting information and documents from a software product to present in higher levels of

abstraction as that of code. The abstraction as the process of ignoring certain details in order to simplify the problem and so

facilitates the specification, design and implementation of a system to proceed in step-wise approach.

Keywords-ARC, SSC, SCT, AL, DTS, Artifacts

I. INTRODUCTION
These software maintenance activities require recovering the

artifacts from the source code. The source code also exists in

many forms. A source code may be written in different

programming languages or have different versions of same

language, scripts or may have errors or incomplete and

cannot be compile. The size of source code may be very

large and implemented in different designs and concepts.

A. Statement of Problem

Artifacts are extracted at different level of abstraction for

maintenance purpose. The extraction of these artifacts

provides clues about the functionality, structural and

behavior of the system. [1] This provides the description of

the essential decisions that have been taken in the design of a

system. Complexity of recovered artefact depend on the size

of source code, degree of source code type, abstraction level

and the degree of available document support to recover the

artefacts for tasks at hand [2].

Software maintenance is the set of activities that mandatory

to providing cost-effective support to software system. Pre-

delivery activities consist on planning for post-delivery

operations, supportability and rationality willpower. Post-

delivery activities consist on software amendment,

preparation and operating a help desk.

Reverse Engineering is the process which has the different

provisions that making it advance although it is a new and

rapidly developing field. Conventionally, Reverse

Engineering has been defined in two steps process: (i)

information extraction and (ii) abstraction. Information

extraction investigation the subject system artefacts mostly

the source code for gathering the row data, whereas

information abstraction creates user oriented documents and

views. The process of reverse engineering developed though

six steps:

 Categorization of formal units into source code,

 Semantic explanation of construction of functional units

and formal units,

 Clarification of association for each unit of input/output

schematics units,

 Manufacturing map for all units and sequences of

frequently connected linear circuits,

 Declaration and semantic report of all system

applications,

 And at the end creation of scaffold of the all system units.

Above Mention steps, foremost three steps are associated

with the local analysis on each module level; whereas the

remaining three steps are consider as overall analysis on a

system in the large systems. Software maintenance is four

types of categories that are corrective, perfective and

adaptive fourth one category is preventive

1) Corrective maintenance: is used to correct the software

errors that are detected during system operation; it also

comprise it also include the system testing with the

customized the programs and upgrading the pertinent

documentation both within and without program reactive

alteration of a software artefact executed after delivery for

correct the discovered errors.

2) Perfective maintenance: Is the modification of software

system for the improvement of its functionality. The

perfective maintenance is used to increase the proficient of

the software system.

3) Adaptive maintenance: the adoptive maintenance is the

modification of a system because of some changes to its

external environment. Whenever hardware or software

technology is improved then the existing software needs to

change to function with the new technology.

4) Preventive maintenance: where you have to write the

extra modules and functions to protect data or to evade

Special issue

3016 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),28(3),3015-3019 ,2016

May-June

process malfunctioning. These definitions commence the

idea that software maintenance can be either scheduled or

unscheduled and reactive or proactive, as shown in Table 1

depicts the correspondences that exist between these

categories [3.4]

Table 1: category of software maintenance

 Unscheduled Scheduled

Reactive Preventive Corrective Adoptive

Proactive Perfective

B. Software Artifact

Software is imperceptible therefore software visualization is

needed in textually [7,8,9] It is a crucial step to visualize the

software. The method of information that is available to the

software maintainer or programmer strappingly collides on

the efficiency to the design recovery methods. Artifacts are

placed at all stages of the software life cycle containing

knowledge data, ontology, risks and requirements [8] The

complexity of recovered artifacts has styles, patterns and

design modules, subsystem, source code, test case tables and

revolving aspects of software system. Static and dynamic

data, high level and low level information, data and control

flow, structural and other software dependencies and

software attributes [10]

C. Complexity of Software Artifacts

Another bog dilemma in the IT world is software

complexity. Most of the software perhaps has some problem

in the distinct stage of life cycle. Software develops steadily

by time and enhances its functionality by adding new

features. Every evaluation in the source code increases the

software size that is another aspect of complexity: Every new

feature may be the beginning of complexity of recoered

artifactshitecture degradation. Complexity risks in non

functional requirements, also including maintainability,

quality and productivity. In this way small application

becomes library, library becomes platform, platform

becomes system, system becomes large system and large

system becomes ultra large system (ULS). Then we think

about this wild beast of complexity that how to overcome

this. It is possible to avoid software complexity, it is possible

to reduce the software complexity, is it accidentally or

inherent? There are so many questions arises about

complexity with the evolution of software.

The software are not recognize by its purposes, behaviors,

structure, algorithms and environment of domain or

modification of software becomes a vital part of science for

us and nobody can figure out how its code is written like this

[5,6]

1) Formal Symptoms of Complexity

 Complete detail of problem domain that has the zillions of

requirement.

 A complete list of requirements and specification that

consist on poor designing, feature creep, over engineering.

 Highly coupling module that extremely interacted

modules or subprogram

 Increasing the software size, doubling and tripling every

year.

 Inseparable concerns and low cohesion consisting in the

random functions,

 Abstraction has no protection or wrong,

 Proportional primitives that has strong hiercomplexity of

recovered artifactshy,

 The software developer has less knowledge about

domain and less capability of software development.

The software artifacts are written in different languages

(natural language as well as programming languages). At

each step the software artifact also describe the software

abstraction level (Domain, Functional, Structural and

implementation levels) [11]. Most probably it is happen that

in an organization supporting artifact are not linked up. This

causes a great maintenance problem. Now a day it becomes a

major challenge for reverse engineering activities. As a result

reverse engineering have spend a large amount of efforts on

manufacturing and integrating the information system to

make a links between these software artifacts. Software

design documentation and source code are two major parts

that used as software artifact during the process of reverse

engineering [12]. The reverse engineering processes that

recover the system artifacts at different levels of abstraction

are depend upon the following factors:

2) Require Artifacts for Maintenance

The software artifacts require for maintenance purpose are

different at the every level of abstraction. We must need to

know that:

 The software developers have specific aim for

maintenance tasks at hand.

 Which type of artifacts are required and at what level of

abstraction?

Available Source code and Documentation Type Size of the

source code, Mix-mode source code of different languages

and scripts or have different dialects, cannot be compiled or

source code has some errors.

 Source code,

 Textual descriptions

 Existing available artifacts (i.e. complexity of recovered

artifact architecture , design diagrams)

 Functional specifications & different available types of

documentation of different formats.

3) Extraction of Artifacts

Completely extraction of source code is called the

information about the system; this information is presented at

each level of abstraction as graphs with different granularity.

The maintenance analysis are base on the information at the

low level is completely automated.

 Reverse Engineering activities requires to extracts the

artifacts at different levels of abstraction.

 The extraction heavily depends on

 the nature of available source code

 Existing documentations

 And artifacts require for the maintenance errands at hand.

 The extraction of artifacts also depend on the require

artifact specification and tracing process.

4) Presentation of Artifacts as Visual Model

 In a specific format or diagrams (i.e. UML diagram)

Special issue

Sci.Int.(Lahore),28(3), ,3015-3019,2016 ISSN 1013-5316;CODEN: SINTE 8 3017

May-June

 At different levels to perform the maintenance activities at

hand.

Figure 1: Measuring the complexity within a task

II MATERIALS AND METHODS
An abstraction for a software artifact concise description is

suppressed the detail; that is insignificant to developer and

the important information highlight (Asif et al.). For example

in high level programming the abstraction allow a

programmer to construct the algorithm without containing

the detail about hardware register allocation. The Software

artifact has normally a number of layers. When maintenance

problems occur, the levels of abstraction layer is applied to

recover the software artifacts. The Software artifact has

normally a number of layers. When maintenance problems

occur, the levels of abstraction layer is applied to recover the

software artifacts. These layers are:

 Domain Abstraction Layer

 Functional Abstraction Layer

 Structural Abstraction Layer

 Implementation Abstraction Layer

Figure 2: Abstraction Levels

At the every level of abstraction layer, it has the different

type of artifacts and every abstraction layer has the specific

values. When we calculate the complexity at every

abstraction level it generates a different value.

1) Domain Abstraction Layer

Domain Abstraction further abstracts the functions by

replacing its algorithmic nature with concepts and specific to

the application domain. Application Domain in abstraction

layer is a set of interrelated software system that contributes

to common design features. Domain in this context has been

defines as:

 An area of application

 An area of business

 An area of software business

 An area of software intensive application

 Areas of application which have the similar

software systems have been built.

2) Functional Abstraction Layer

Functional abstraction level is a further higher abstraction

level, it usually achieve by further abstraction of components

or sub-components (programs or modules or class) to reveal

the relations and logic, which perform certain tasks e.g. use

cases and scenarios.

3) Structural Abstraction Layer

Structural abstraction level is a further abstraction of system

components (program or modules) to extract the program

structures, how the components are related and control to

each other. The artifacts at this level data flow diagram,

processes and complexity of recovered artifacts.

4) Implementation Abstraction Layer

Implementation abstraction is a lowest level of abstraction

and at this level the abstraction of the knowledge of the

language in which the system is written, the syntax and

semantics of language and the complexity of recovered

artifact of system components (program or module tree)

rather than data structures and algorithms is abstracted.

Artifacts at this level are program, function and files.

III RESULTS AND DISCUSSIONS
The software evolves to meet the requirement of new worlds,

an obsolete functionality is removed and the new module is

added, so the design gradually diverges from its original

design. The alteration initiates the system’s evolution due to

variety of reasons, adding the new feature in the system on

the user request, Adding the new hardware and software

technologies and business decision to improve the source

code. Software evolution and maintenance depends upon the

several factors including the existing documentation of

system design. In some case, the original system design has

not any type of existing documentation; as a result the

decision at implementation level makes problems.

The source code does not contain the much information

about the original design information, which must be

reconstructed from available sources. This makes the system

complex. The artifact recovery complexity depend on the

size of source code, degree of source code type, abstraction

level and the degree of available document support to

recover the artifacts for task at hand.

The table is also show by graph that how the values are

varies at different levels.

A) Complexity at Level 2

Task 2, task 6 and task 29 have the same complexity level.

Here SSC for these tasks are in small form that size of source

code consists on only few lines of code. SCT for these tasks

are in normal form, it mean source code exist for these tasks

are in a single language. AL for task 4 and 6 are in

Special issue

3018 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),28(3),3015-3019 ,2016

May-June

implementation level. Source code for these two task are in

the form of files function definition and call procedures. The

task 29 has the structural level, its mean source code for here

is in components or in complexity of recovered artifacts. The

DTS for task 4 and 6 is in minor form that documentation at

this level is only system or component details. So the artifact

recovery complexity is 2 that easily recovered because

difference only occur in task 29 between AL and DTS which

is structural level and DTS is in medium level. Although we

have artifact at AL in component or complexity of recovered

artifactshitecture but we know about the requirements, design

and implementation details that support to understand the

existing artifacts. So we can easily recovered the artifact and

calculate that how much complicated.

B) Complexity of Recovered Artifacts at Level 3

The artifact recovery complexity of tasks 1, 3,8,11,13,16,21

is at level 3. The SSC value of task 1and 3 are 1 and for task

8, 11, 13, 16, 21 are 2. The values shows that the task 1 and 3

are in small size of code that consist on few lines while other

tasks are medium type of code that consist of 1000 lines of

code. The second dependency of COMPLEXITY OF

RECOERED ARTIFACTS is SCT. All source codes type are

in normal form that source code exist in a single language.

Third dependency of complexity is AL. the abstraction level

for all tasks is also same and exists at the implementation

level. The fourth dependency is DTS. The tasks 1and 3 has

no documentation and tasks 8,11,13,16 has consist only

system/component details. The task 21 has medium type of

DTS; that consist on some requirements, design and

implementation details. The complexity at level is 3.

C) Complexity at Level 4

The SSC for task 2 is small and DTS for task 2 is not

available but there are errors in the source code type at the

abstraction level of implementation. So recovery of artifacts

is not easy with error code. The other task 12, 14 and 17 are

also place in the same complexity value 4. Here we have the

SSC medium type but all source code type consist on the

errors and there abstraction level is lowest level. Although

we have minor type of DTS but recovery of artifact is not

easy. For recovering artifacts first we must remove the errors

from code then we can overcome its complexity.
D) Complexity at level 5

Here we have 5 tasks for measure the artifact recovery

complexity. The task 10 has SSC value 2, its mean size of

source code for this is medium and source code type is

incomplete here. Abstraction level is in the form of files,

function and procedure calls. So with incomplete source code

it is complicated to recover. The value for task 15 is same as

task 10. Now discuss about task 23 and 24 which have the

same dependency values. SSC is small form and source code

type is normal here. The abstraction level is at the highest

level where the high level entities describe the system.

Although we have minor documentation type support but it’s

difficult to recover the artifact. The task 30 has very large

size of source code that is in normal form but here we have

use cases and scenarios at the abstraction level. The recovery

of functional layer is not so easy with very large size of

source code. Although we have medium type of

documentation support for task 30 but it’s difficult to

recover.

E) Complexity at Level 6

Here we have 5 tasks. The task 5 has few lines of source

code but SCT is in Mix-mode here that consist on multiple

languages. The abstraction level is implementation type with

minor documentation support. The tasks 9 and 18 are has the

same dependency values. SSC is medium type SCT is in

dialect form and abstraction level is lowest with minor type

of documentation support. The task 20 is in large size of

source code which is written in the different version of same

language. DTS for task 20 is medium type. Now about task

22; which consist on very large size of source code with

dialect form? Abstraction level is lowest but has the high

documentation support that help to recover the artifact.

F) Complexity at Level 7

Here we have 4 tasks for discuss, the task 7 has medium type

of SSC with value 2 and SCT is in Mix-mode. Abstraction

level is lowest with minor type of DTS. So recovery is

difficult due to SCT which consist on multiple languages.

The task 19 has large size of source code in dialect form.

Abstraction level is lowest but has the minor type of DTS.

The task 27 consists on very large with dialects form.

Abstraction level is implementation with medium type of

documentation support. Now about task 28 which is large

size of source code in multiple languages and this source

code is in form of use cases and scenarios but DTS for this

task is highest.

G) Complexity at Level 8

Now we discuss about task 28 that it’s Complexity of

recovered artifacts is up to 8. Task 28 is medium type of

source code which is written in multiple languages. The

abstraction level is in functional form and DTS is in some

requirements, design and implementation details exits for

support.

IV CONCLUSION
The software maintenance is distinct as the concert of all

activities required to keep a software system operational and

approachable after it is accepted and placed into production.

The software maintenance activities are classified into four

major types, perfective, adoptive, corrective and preventive.

This classification based on modifying program to generate

new outputs, to change executing logic, to integrate new

features, to improve the existing features, to correct errors in

the existing code when they are detected during the meting

out of the system, to optimize the code, and to adapt the

software to a different hardware/software environment.

REFERENCES

[1]. S. Sultana, N. Asif, M. H. Malik, and M. Rafi,

“IMPLEMENTATION OF SOFTWARE ARTIFACT

RECOVERY COMPLEXITY TOOL,” SCIENCE

INTERNATIONAL-LAHORE, no. 06, pp. 6033–6038,

Dec. 2015.

[2]. Asif, N., Dixon, M., Finlay, J., & Coxhead, G. (2002,

June). Recover the design artifacts. In proceedings of

International Conference of Information and

Special issue

Sci.Int.(Lahore),28(3), ,3015-3019,2016 ISSN 1013-5316;CODEN: SINTE 8 3019

May-June

Knowledge Engineering (IKE02) (pp. 656-662). Asif,

Nadim, et al. "Recover the design

artifacts." proceedings of International Conference of

Information and Knowledge Engineering (IKE02).

2002.

[3]. Asif, Nadim, et al. "Clustering the source

code." WSEAS Transactions on Computers 8.12

(2009): 1835-1844.

[4]. Asif, Nadim, et al. "Recover the design

artifacts." proceedings of International Conference of

Information and Knowledge Engineering (IKE02).

2002.

[5]. Asif, Nadim. "Reverse Engineering Methodology to

Recover the Design Artifacts: A Case Study." Software

Engineering Research and Practice. 2003.

[6]. Asif, Nadim. "Artifacts Recovery at Different levels of

Abstraction." Information Technology Journal 7.1

(2008): 1-15.

[7]. Micro, Bianco at el. " Extracting and analyzing

software code metrics from C# source code." Center for

Applied Software Engineering Free University of

Bolzano-Bozen.

[8]. Chikofsky, Elliot J., and James H. Cross. "Reverse

engineering and design recovery: A

taxonomy." Software, IEEE 7.1 (1990): 13-17.

[9]. Koschke, Rainer. "Atomic architectural component

recovery for program understanding and evolution."

(2000).

[10]. Koschke, Rainer. " Atomic Architectural Component

Recovery for Program Understanding and Evolution."

Proceedings of the International Conference on

Software Maintenance (2002).

[11]. Koschke, Rainer. "Software Visualization in Software

Maintenance, Reverse Engineering, and Re-

engineering: A Research Survey." Journal of Software

Maintenance and Evolution: Research and Practice J.

Softw. Maint. Evol.: Res. Pract.: 87-109.

[12]. Eichberg, Michael. Open Integrated Development

and Analysis Environments. Diss. TU Darmstadt, 2007.

[13]. Murphy, Gail C., David Notkin, and Kevin Sullivan.

"Software reflexion models: Bridging the gap between

source and high-level models." ACM SIGSOFT

Software Engineering Notes 20.4 (1995): 18-28.

[14]. Murphy, Gail C., and David Notkin. "Reengineering

with reflexion models: A case study." Computer 30.8

(1997): 29-36.

[15]. Pigoski, Thomas M. Practical software maintenance:

best practices for managing your software investment.

John Wiley & Sons, Inc., 1996.

[16]. Rasool and Asif. Design Recovery

Tool. International Journal of Software Engineering.

2007

[17]. Banker, Rajiv D., et al. "Software complexity and

maintenance costs."Communications of the ACM 36.11

(1993): 81-94.

[18]. Banker, Rajiv D., et al. "Software errors and software

maintenance management." Information Technology

and Management 3.1-2 (2002): 25-41.

[19]. Hennicker, Rolf, and Nora Koch. "Systematic design of

Web applications with UML." Unified Modeling

Language: Systems Analysis, Design and Development

Issues (2001): 1-20.

[20]. Swanson, B. E., and I. S. Maintainability. "Should It

Reduce the Maintenance Effort." Conference on

Maintenance, New Orleans. 1999.

[21]. Sarma, Anita, Zahra Noroozi, and André Van Der

Hoek. "Palantír: raising awareness among configuration

management workspaces." Software Engineering, 2003.

Proceedings. 25th International Conference on. IEEE,

2003.

[22]. Singh, Paramvir, and Hardeep Singh. "DynaMetrics: a

runtime metric-based analysis tool for object-oriented

software systems." ACM SIGSOFT Software

Engineering Notes 33.6 (2008): 1-6.

[23]. Dean, Thomas R., Andrew J. Malton, and Ric Holt.

"Union Schemas as a Basis for a C++

Extractor." Reverse Engineering, 2001. Proceedings.

Eighth Working Conference on. IEEE, 2001.

